论文标题
基于指令的混合动力办公室NERC云模型
A directive based hybrid Met Office NERC Cloud model
论文作者
论文摘要
大型涡流模拟是研究大气流,湍流和云微物理学的关键建模工具。英国大气研究社区使用的模型是均匀的,最新的模型MONC旨在在CPU核心数量很高的大量HPC系统上运行。为了将来证明这些代码,值得研究其他技术和架构,这些技术和架构可能支持在EXA规模上运行其代码的社区。 在本文中,我们介绍了MONC的混合版本,其中最密集的方面被卸载到GPU,而其余功能则同时运行在CPU上。我们使用指令驱动的OpenACC开发,我们考虑了这项技术对现代Fortran Scientific Codes的适用性和成熟度,以及一般软件工程技术,这些技术有助于这种类型的移植工作。在考虑其他调整选项之前,比较了与CPU版本的混合模型的性能,并在同型和异性元版版本的能量使用之间进行比较。这项工作的结果是一个有前途的混合模型,它显示了GPU具有重大的计算工作负载时我们方法的性能优势,不仅可以应用于MONC模型,还可以应用于社区中使用的其他天气和气候模拟。
Large Eddy Simulation is a critical modelling tool for the investigation of atmospheric flows, turbulence and cloud microphysics. The models used by the UK atmospheric research community are homogeneous and the latest model, MONC, is designed to run on substantial HPC systems with very high CPU core counts. In order to future proof these codes it is worth investigating other technologies and architectures which might support the communities running their codes at the exa-scale. In this paper we present a hybrid version of MONC, where the most computationally intensive aspect is offloaded to the GPU while the rest of the functionality runs concurrently on the CPU. Developed using the directive driven OpenACC, we consider the suitability and maturity of this technology to modern Fortran scientific codes as well general software engineering techniques which aid this type of porting work. The performance of our hybrid model at scale is compared against the CPU version before considering other tuning options and making a comparison between the energy usage of the homo- and hetero-geneous versions. The result of this work is a promising hybrid model that shows performance benefits of our approach when the GPU has a significant computational workload which can not only be applied to the MONC model but also other weather and climate simulations in use by the community.