论文标题

单眼深度估计的自适应置信度阈值

Adaptive confidence thresholding for monocular depth estimation

论文作者

Choi, Hyesong, Lee, Hunsang, Kim, Sunkyung, Kim, Sunok, Kim, Seungryong, Sohn, Kwanghoon, Min, Dongbo

论文摘要

自我监督的单眼深度估计已成为缺乏地面真相标签的一种有吸引力的解决方案,但是其重建损失通常会在物体边界跨物体边界产生过度平滑的结果,并且无法明确处理闭塞。在本文中,我们提出了一种新方法,以利用由自我监督的立体声匹配方法产生的立体声图像的伪地面真相深度图。据估计,伪地面真实深度图的置信图可以通过不准确的伪深度图来减轻性能变性。为了应对置信图本身的预测误差,我们还利用了在伪深度图上动态条件的阈值的阈值网络。通过阈值置信图滤除的伪深度标签用于监督单眼深度网络。此外,我们提出了概率框架,该框架通过像素自适应卷积(PAC)层的不确定性图来完善单眼深度图。实验结果表明,与最先进的单眼深度估计方法相比表现出色。最后,我们展示了所提出的阈值学习也可以用来提高现有置信度估计方法的性能。

Self-supervised monocular depth estimation has become an appealing solution to the lack of ground truth labels, but its reconstruction loss often produces over-smoothed results across object boundaries and is incapable of handling occlusion explicitly. In this paper, we propose a new approach to leverage pseudo ground truth depth maps of stereo images generated from self-supervised stereo matching methods. The confidence map of the pseudo ground truth depth map is estimated to mitigate performance degeneration by inaccurate pseudo depth maps. To cope with the prediction error of the confidence map itself, we also leverage the threshold network that learns the threshold dynamically conditioned on the pseudo depth maps. The pseudo depth labels filtered out by the thresholded confidence map are used to supervise the monocular depth network. Furthermore, we propose the probabilistic framework that refines the monocular depth map with the help of its uncertainty map through the pixel-adaptive convolution (PAC) layer. Experimental results demonstrate superior performance to state-of-the-art monocular depth estimation methods. Lastly, we exhibit that the proposed threshold learning can also be used to improve the performance of existing confidence estimation approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源