论文标题
具有强大平价因子的图表的表征
A characterization for graphs having strong parity factors
论文作者
论文摘要
如果每个子集$ x \ subseteq v $ agragh $ g $具有\ emph {stront Parity propert},则带有$ | x | $偶数,$ g $,$ g $具有至少一个,至少一个,以至于$ d_f(v)\ equiv 1 \ equiv 1 \ equiv 1 \ pmod for x $ in x $,$ d_ $,$ d_ $ quiv($ d _ quiv($ d_) v(g)-x $。 Bujtás,Jendrol和Tuza(关于图形的特定因素,\ Emph {Graphs and Combin。},36(2020),1391-1399。)引入了概念,并推测,每个2-边缘的图形至少具有最小的图形至少三个具有三个具有强度的属性。在本文中,我们给出了图表的特征,使其具有强大的奇偶校验特性,并构建一个反例,以反驳Bujtás,Jendrol和Tuza提出的猜想。
A graph $G$ has the \emph{strong parity property} if for every subset $X\subseteq V$ with $|X|$ even, $G$ has a spanning subgraph $F$ with minimum degree at least one such that $d_F(v)\equiv 1\pmod 2$ for all $v\in X$, $d_F(y)\equiv 0\pmod 2$ for all $y\in V(G)-X$. Bujtás, Jendrol and Tuza (On specific factors in graphs, \emph{Graphs and Combin.}, 36 (2020), 1391-1399.) introduced the concept and conjectured that every 2-edge-connected graph with minimum degree at least three has the strong parity property. In this paper, we give a characterization for graphs to have the strong parity property and construct a counterexample to disprove the conjecture proposed by Bujtás, Jendrol and Tuza.