论文标题

模棱两可的倾斜模块,PFAFFIAN品种和非交换矩阵因素化

Equivariant Tilting Modules, Pfaffian Varieties and Noncommutative Matrix Factorizations

论文作者

Hirano, Yuki

论文摘要

我们表明,在均值代数上的倾斜模块会引起派生因素化类别的等价。作为应用程序,我们表明,PFAFFIAN品种的线性分辨率的非交换性分辨率的派生类别等同于非交通仪表的分解类别的类别,landau-ginzburg模型$(λ,χ,χ,w) $ w/\ operatorname {gsp}(q)$是由符号齐射组$ \ operatatorName {gsp}(q)$的某个表示形式产生的$ w $。

We show that equivariant tilting modules over equivariant algebras induce equivalences of derived factorization categories. As an application, we show that the derived category of a noncommutative resolution of a linear section of a Pfaffian variety is equivalent to the derived factorization category of a noncommutative gauged Landau-Ginzburg model $(Λ,χ, w)^{\mathbb{G}_m}$, where $Λ$ is a noncommutative resolution of the quotient singularity $W/\operatorname{GSp}(Q)$ arising from a certain representation $W$ of the symplectic similitude group $\operatorname{GSp}(Q)$ of a symplectic vector space $Q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源