论文标题
事件触发的控制中的机器学习:最新进展和开放问题
Machine Learning in Event-Triggered Control: Recent Advances and Open Issues
论文作者
论文摘要
在过去的十年中,由于分散控制应用程序的趋势和网络物理系统应用的出现,网络控制系统引起了人们的关注。但是,由于无线网络的复杂性质,现实世界中无线网络控制系统的通信带宽,可靠性问题以及对网络动态的认识不足。将机器学习和事件触发的控制结合起来有可能减轻其中一些问题。例如,可以使用机器学习来克服缺乏网络模型的问题,通过学习系统行为或通过不断学习模型动态来适应动态变化的模型。事件触发的控制可以通过仅在必要时或可用资源时传输控制信息来帮助保护通信带宽。本文的目的是对有关机器学习使用与事件触发的控制结合使用的文献进行综述。机器学习技术,例如统计学习,神经网络和基于强化的学习方法,例如深入强化学习,并与事件触发的控制结合使用。我们讨论如何根据机器学习的目的将这些学习算法用于不同的应用程序。在对文献的审查和讨论之后,我们重点介绍了与基于机器学习的事件触发的控制并提出潜在解决方案相关的开放研究问题和挑战。
Networked control systems have gained considerable attention over the last decade as a result of the trend towards decentralised control applications and the emergence of cyber-physical system applications. However, real-world wireless networked control systems suffer from limited communication bandwidths, reliability issues, and a lack of awareness of network dynamics due to the complex nature of wireless networks. Combining machine learning and event-triggered control has the potential to alleviate some of these issues. For example, machine learning can be used to overcome the problem of a lack of network models by learning system behavior or adapting to dynamically changing models by continuously learning model dynamics. Event-triggered control can help to conserve communication bandwidth by transmitting control information only when necessary or when resources are available. The purpose of this article is to conduct a review of the literature on the use of machine learning in combination with event-triggered control. Machine learning techniques such as statistical learning, neural networks, and reinforcement learning-based approaches such as deep reinforcement learning are being investigated in combination with event-triggered control. We discuss how these learning algorithms can be used for different applications depending on the purpose of the machine learning use. Following the review and discussion of the literature, we highlight open research questions and challenges associated with machine learning-based event-triggered control and suggest potential solutions.