论文标题

复杂偏移的非架构动力学

Non-Archimedean dynamics of the complex shift

论文作者

Tyapaev, L. B.

论文摘要

p字母字母fp = z/pz(p是p是素数)的(异步)自动机转换,是padic整数环的连续转换(w.r.t. p ad adic度量)。此外,自动机映射会在ZP上生成非架构的动态系统。这种动力系统的测量保护和终身性(W.R.T. HAAR测量)在密码学(例如,在流动机中)起着重要作用。本文的目的是提出一种实现P-ADICS复杂转变的新颖方式。特别是,我们介绍了有关P-ADICS转换的Mahler扩展的条件,这足以使其变得复杂。此外,就Mahler扩展而言,我们具有这种映射的足够条件。

An (asynchronous) automaton transformation of one-sided infinite words over p-letter alphabet Fp = Z/pZ, where p is a prime, is a continuous transformation (w.r.t. the p-adic metric) of the ring of p-adic integers Zp. Moreover, an automaton mapping generates a non-Archimedean dynamical system on Zp. Measure-preservation and ergodicity (w.r.t. the Haar measure) of such dynamical systems play an important role in cryptography (e.g., in stream cyphers). The aim of this paper is to present a novel way of realizing a complex shift in p-adics. In particular, we introduce conditions on the Mahler expansion of a transformation on the p-adics which are sufficient for it to be complex shift. Moreover, we have a sufficient condition of ergodicity of such mappings in terms of Mahler expansion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源