论文标题
建模与多转化对话生成的主题相关性
Modeling Topical Relevance for Multi-Turn Dialogue Generation
论文作者
论文摘要
主题漂移是多转向对话中的常见现象。因此,理想的对话生成模型应该能够捕获每个上下文的主题信息,检测相关上下文并相应地产生适当的答复。但是,现有模型通常使用单词或句子级别的相似性来检测相关上下文,而这些上下文无法很好地捕获主题级别的相关性。在本文中,我们提出了一个名为Star-BTM的新模型,以解决此问题。首先,Biterm主题模型已在整个培训数据集中进行了预训练。然后,主题级别的注意权重根据每个上下文的主题表示计算。最后,在解码过程中使用了注意力权重和主题分布来生成相应的响应。关于中国客户服务数据和英语Ubuntu对话数据的实验结果表明,在基于公制的和人类的评估方面,Star-BTM明显优于几种最先进的方法。
Topic drift is a common phenomenon in multi-turn dialogue. Therefore, an ideal dialogue generation models should be able to capture the topic information of each context, detect the relevant context, and produce appropriate responses accordingly. However, existing models usually use word or sentence level similarities to detect the relevant contexts, which fail to well capture the topical level relevance. In this paper, we propose a new model, named STAR-BTM, to tackle this problem. Firstly, the Biterm Topic Model is pre-trained on the whole training dataset. Then, the topic level attention weights are computed based on the topic representation of each context. Finally, the attention weights and the topic distribution are utilized in the decoding process to generate the corresponding responses. Experimental results on both Chinese customer services data and English Ubuntu dialogue data show that STAR-BTM significantly outperforms several state-of-the-art methods, in terms of both metric-based and human evaluations.