论文标题
用于无监督的高斯混合模型学习的自适应EM加速器
An Adaptive EM Accelerator for Unsupervised Learning of Gaussian Mixture Models
论文作者
论文摘要
我们为无监督的自适应期望最大化(EM)算法提出了Anderson加速度(AA)方案,从多元数据中学习有限的混合模型(Figueiredo和Jain 2002)。所提出的算法能够自动确定混合组件的最佳数量,并收敛到最佳解决方案的速度要比其非加速版本快得多。基于AA的算法的成功源于几个发展,而不是单个突破(没有这些突破,我们的测试表明AA会灾难性地失败)。首先,我们确保具有最近提出的单调性控制算法(Henderson and Varahdan 2019)的可能性函数的单调性(标准EM算法的关键特征),并通过新的单调性测试增强了几乎没有头顶的新单调测试。我们为AA提出了敏捷的策略,以严格严格地保留高斯权重和协方差矩阵的正面确定性,并保存到完全观察到的数据集的第二瞬间。最后,我们使用GAP统计量采用K均值聚类算法,以避免过分高估组件的初始数量,从而最大程度地提高性能。我们通过几个合成数据集证明了该算法的准确性和效率,这些数据集是已知数量组件数量的高斯分布的混合物,以及由粒子中的模拟产生的数据集。我们的数值结果表明,当已知的混合组件的确切数量以及在几个和超过一个数量级以外的数量级之间,与成分适应性相比,相对于非加速EM的加速度最高为60倍。
We propose an Anderson Acceleration (AA) scheme for the adaptive Expectation-Maximization (EM) algorithm for unsupervised learning a finite mixture model from multivariate data (Figueiredo and Jain 2002). The proposed algorithm is able to determine the optimal number of mixture components autonomously, and converges to the optimal solution much faster than its non-accelerated version. The success of the AA-based algorithm stems from several developments rather than a single breakthrough (and without these, our tests demonstrate that AA fails catastrophically). To begin, we ensure the monotonicity of the likelihood function (a the key feature of the standard EM algorithm) with a recently proposed monotonicity-control algorithm (Henderson and Varahdan 2019), enhanced by a novel monotonicity test with little overhead. We propose nimble strategies for AA to preserve the positive definiteness of the Gaussian weights and covariance matrices strictly, and to conserve up to the second moments of the observed data set exactly. Finally, we employ a K-means clustering algorithm using the gap statistic to avoid excessively overestimating the initial number of components, thereby maximizing performance. We demonstrate the accuracy and efficiency of the algorithm with several synthetic data sets that are mixtures of Gaussians distributions of known number of components, as well as data sets generated from particle-in-cell simulations. Our numerical results demonstrate speed-ups with respect to non-accelerated EM of up to 60X when the exact number of mixture components is known, and between a few and more than an order of magnitude with component adaptivity.