论文标题

修改图的度序列和度序列属性的测试

Modifying a Graph's Degree Sequence and the Testablity of Degree Sequence Properties

论文作者

Gishboliner, Lior

论文摘要

我们表明,如果图$ g $的度序列在$ \ ell_1 $ distance中与给定的可靠度序列$(d_1,\ dots,d_n)$接近,则$ g $在编辑距离上与semence $(d_1,\ dots,d_n)$的编辑距离接近。然后,我们使用此结果来证明,根据度序列定义的每个图形属性都可以在密集的图模型中测试,其查询复杂性与$ n $无关。

We show that if the degree sequence of a graph $G$ is close in $\ell_1$-distance to a given realizable degree sequence $(d_1,\dots,d_n)$, then $G$ is close in edit distance to a graph with degree sequence $(d_1,\dots,d_n)$. We then use this result to prove that every graph property defined in terms of the degree sequence is testable in the dense graph model with query complexity independent of $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源