论文标题

在简单组中有效的KAN纤维

Effective Kan fibrations in simplicial sets

论文作者

Berg, Benno van den, Faber, Eric

论文摘要

我们介绍了有效的KAN纤维化的概念,这是一种新的数学结构,可用于研究简单同型理论。我们的主要动机是使简单同质理论适合同型类型理论。有效的KAN纤维是配备了满足某些非平凡性能的所选升降机的简单组合图。这与普通的,非结构化的kan纤维概念形成鲜明对比。我们表明,可以将KAN纤维的基本特性扩展到有效KAN纤维的明确结构。特别是,我们给出一个建设性的(明确的)证明,表明有效的KAN纤维在向前或纤维指数下稳定。对于普通的KAN纤维来说,这是不可能的。我们进一步表明,有效的KAN纤维是局部的,或完全由它们的纤维上方的纤维确定。我们还给出了(无效的)证明,说可以配备有效KAN纤维的结构的地图正是普通的KAN纤维。因此,隐含地,这两个概念仍然描述了相同的同质理论。通过证明有效的KAN纤维结合了所有这些特性,我们解决了同型类型理论中的一个开放问题。通过这种方式,我们的工作提供了第一步,可以在简单集中对Voevodsky的单价理论模型进行建设性说明。

We introduce the notion of an effective Kan fibration, a new mathematical structure that can be used to study simplicial homotopy theory. Our main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. This contrasts with the ordinary, unstructured notion of a Kan fibration. We show that fundamental properties of Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, we give a constructive (explicit) proof showing that effective Kan fibrations are stable under push forward, or fibred exponentials. This is known to be impossible for ordinary Kan fibrations. We further show that effective Kan fibrations are local, or completely determined by their fibres above representables. We also give an (ineffective) proof saying that the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. By showing that the effective Kan fibrations combine all these properties, we solve an open problem in homotopy type theory. In this way our work provides a first step in giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源