论文标题
二进制范德华流体的热力学曲率
Thermodynamic curvature of the binary van der Waals fluid
论文作者
论文摘要
热力学RICCI曲率标量$ r $已在许多情况下应用,主要用于以2D热力学几何形状为特征的系统。 $ r $三分法的热力学几何形状的计算很少,尤其是在流体状态下。在本文中,我们计算了两个涉及二元流体混合物的示例的$ r $:仅具有排斥相互作用的范德华(VDW)流体的二进制混合物,以及添加了有吸引力的相互作用的二进制VDW混合物。在这两个示例中,我们评估了全3D热力学几何形状的$ r $。我们的发现是,在纯流体中发现了$ r $的基本物理模式在很大程度上是二进制液体的。
The thermodynamic Ricci curvature scalar $R$ has been applied in a number of contexts, mostly for systems characterized by 2D thermodynamic geometries. Calculations of $R$ in thermodynamic geometries of dimension three or greater have been very few, especially in the fluid regime. In this paper, we calculate $R$ for two examples involving binary fluid mixtures: a binary mixture of a van der Waals (vdW) fluid with only repulsive interactions, and a binary vdW mixture with attractive interactions added. In both these examples, we evaluate $R$ for full 3D thermodynamic geometries. Our finding is that basic physical patterns found for $R$ in the pure fluid are reproduced to a large extent for the binary fluid.