论文标题

重建均匀套件的着色

Reconstruction of a coloring from its homogeneous sets

论文作者

Piña, Claribet, Uzcátegui, Carlos

论文摘要

我们研究着色的重建问题。给定有限或可计数的$ x $,$ x $上的着色是一个函数$φ:[x]^{2} \ to \ {0,1 \} $,其中$ [x]^{2} $是所有2个elements subsets of $ x $的集合。当$φ$在$ [h]^2 $上是常数时,$ h \ subseteq x $对于$φ$是同质的。令$ hom(φ)$为$φ$的所有同质套件的集合。着色$ 1-φ$称为$φ$的补充。我们说$φ$是{\ em可重建},直到其均匀套件的补充,如果对于$ x $上的任何着色$ψ$,以便$ x $(φ)= hom(φ)= hom(ψ)$,我们有$ c =φ$或$ $ $ $或$ c $或$ψ= 1-φ$。我们提出了重建性和非重构性的几个条件。我们表明,有一种鲍雷尔(Borel)从其均匀套件中重建着色的方法。

We study a reconstruction problem for colorings. Given a finite or countable set $X$, a coloring on $X$ is a function $φ: [X]^{2}\to \{0,1\}$, where $[X]^{2}$ is the collection of all 2-elements subsets of $X$. A set $H\subseteq X$ is homogeneous for $φ$ when $φ$ is constant on $[H]^2$. Let $hom(φ)$ be the collection of all homogeneous sets for $φ$. The coloring $1-φ$ is called the complement of $φ$. We say that $φ$ is {\em reconstructible} up to complementation from its homogeneous sets, if for any coloring $ψ$ on $X$ such that $hom(φ)=hom(ψ)$ we have that either $ψ=φ$ or $ψ=1-φ$. We present several conditions for reconstructibility and non reconstructibility. We show that there is a Borel way to reconstruct a coloring from its homogeneous sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源