论文标题

胸部射线照相术中基于深度学习的四个区域肺部分割,用于19诊断

Deep Learning-based Four-region Lung Segmentation in Chest Radiography for COVID-19 Diagnosis

论文作者

Kim, Young-Gon, Kim, Kyungsang, Wu, Dufan, Ren, Hui, Tak, Won Young, Park, Soo Young, Lee, Yu Rim, Kang, Min Kyu, Park, Jung Gil, Kim, Byung Seok, Chung, Woo Jin, Kalra, Mannudeep K., Li, Quanzheng

论文摘要

目的。成像在评估Covid 19肺炎的严重程度方面起着重要作用。但是,胸部X射线照相术(CXR)发现的语义解释不包括射线照相不相差的定量描述。当前的大多数AI辅助CXR图像分析框架没有量化疾病的区域变化。为了解决这些问题,我们提出了一种四个区域肺部分割方法,以帮助准确量化Covid 19肺炎。方法。首先应用于左右肺部的分割模型,然后使用Carina和左Hilum检测网络,这是将上和下肺分离的临床标志。为了提高19幅图像的分段性能,利用了包含五个模型的集合策略。使用每个区域,我们通过对肺水肿质量(RALE)的射线照相评估评估了所提出方法的临床相关性。结果。拟议的整体策略显示骰子得分为0.900,显着高于常规方法(0.854 0.889)。分段四个区域的平均强度表明在Rale框架下的肺部不透性的程度和密度评分的正相关。结论。 CXR中的基于深度学习的模型可以准确细分并量化肺炎患者肺部不渗透症的区域分布。

Purpose. Imaging plays an important role in assessing severity of COVID 19 pneumonia. However, semantic interpretation of chest radiography (CXR) findings does not include quantitative description of radiographic opacities. Most current AI assisted CXR image analysis framework do not quantify for regional variations of disease. To address these, we proposed a four region lung segmentation method to assist accurate quantification of COVID 19 pneumonia. Methods. A segmentation model to separate left and right lung is firstly applied, and then a carina and left hilum detection network is used, which are the clinical landmarks to separate the upper and lower lungs. To improve the segmentation performance of COVID 19 images, ensemble strategy incorporating five models is exploited. Using each region, we evaluated the clinical relevance of the proposed method with the Radiographic Assessment of the Quality of Lung Edema (RALE). Results. The proposed ensemble strategy showed dice score of 0.900, which is significantly higher than conventional methods (0.854 0.889). Mean intensities of segmented four regions indicate positive correlation to the extent and density scores of pulmonary opacities under the RALE framework. Conclusion. A deep learning based model in CXR can accurately segment and quantify regional distribution of pulmonary opacities in patients with COVID 19 pneumonia.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源