论文标题

对于不可压缩的Euler方程的轴对称爆破解决方案的不稳定性

Instability for Axisymmetric Blow-up Solutions to Incompressible Euler Equations

论文作者

Lafleche, Laurent, Vasseur, Alexis F., Vishik, Misha

论文摘要

尚不清楚是否可以在有限的时间内对不可压缩的Euler方程进行解决方程。在[{\ em comm。数学。 Phys。},378:557--568,2020],已经表明,如果存在,则这种解决方案将在接近爆破的时间内线性不稳定。在本文中,我们表明,即使在更刚性的轴对称情况下,同样的现象也存在。为了获得此结果,我们首先证明仅涉及涡度的环形成分的爆破标准。还研究了爆破轮廓的不稳定性。

It is still not known whether a solution to the incompressible Euler equation, endowed with a smooth initial value, can blow-up in finite time. In [{\em Comm. Math. Phys.}, 378:557--568, 2020] it has been shown that, if it exists, such a solution becomes linearly unstable close to the blow-up time. In this paper, we show that the same phenomenon holds even in the more rigid axisymmetric case. To obtain this result, we first prove a blow-up criterion involving only the toroidal component of the vorticity. The instability of blow-up profiles is also investigated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源