论文标题
连续下函数的优化问题
An optimization problem for continuous submodular functions
论文作者
论文摘要
实际的连续下调函数作为对连续域的相应离散概念的概括,最近引起了相当大的关注。熵函数的模拟概念需要其他属性:在$ \ Mathbb r^n $的非负轨道上定义的真实函数,如果是熵(EL),如果是熵(EL),则在零时,在零时,非销售,并具有减少的回报属性。 由有关多部分秘密共享的香农复杂性的问题的推动,考虑了以下一般优化问题的特殊情况:找到满足某些约束的EL功能的最低成本。 在我们的特殊情况下,EL函数的成本是零部分衍生物的最大值。另一种可能性可能是功能范围的至高无上。约束是由平滑界面的表面$ s $切断向下闭合子集的。如果在$ s $的内部点,该函数的左侧和右部分衍生物的内部点有可能不同。 根据表面$ S $的正态,给出了最低成本的一般下限。当$ S $是线性时,界限很紧。在二维情况下,对于凸或凹面$ s $的相同界限是紧密的。结果表明,最佳EL函数不一定是唯一的。本文以几个开放性问题结束。
Real continuous submodular functions, as a generalization of the corresponding discrete notion to the continuous domain, gained considerable attention recently. The analog notion for entropy functions requires additional properties: a real function defined on the non-negative orthant of $\mathbb R^n$ is entropy-like (EL) if it is submodular, takes zero at zero, non-decreasing, and has the Diminishing Returns property. Motivated by problems concerning the Shannon complexity of multipartite secret sharing, a special case of the following general optimization problem is considered: find the minimal cost of those EL functions which satisfy certain constraints. In our special case the cost of an EL function is the maximal value of the $n$ partial derivatives at zero. Another possibility could be the supremum of the function range. The constraints are specified by a smooth bounded surface $S$ cutting off a downward closed subset. An EL function is feasible if at the internal points of $S$ the left and right partial derivatives of the function differ by at least one. A general lower bound for the minimal cost is given in terms of the normals of the surface $S$. The bound is tight when $S$ is linear. In the two-dimensional case the same bound is tight for convex or concave $S$. It is shown that the optimal EL function is not necessarily unique. The paper concludes with several open problems.