论文标题

带有非平衡电压控制磁性,界面和图案的电烯烃

Electroferrofluids with non-equilibrium voltage-controlled magnetism, interfaces, and patterns

论文作者

Cherian, Tomy, Sohrabi, Fereshteh, Rigoni, Carlo, Ikkala, Olli, Timonen, Jaakko V. I.

论文摘要

具有连续耗散的材料可以在热力学平衡中表现出反应和功能。尽管这个概念是众所周知的,但一个重大的挑战是实施:如何以功能性非平衡状态合理设计材料并量化耗散?在这里,我们解决了传达多种功能的广泛使用的胶体纳米颗粒。我们建议可以通过连续注射和能量耗散来创建和维持稳态的纳米颗粒浓度梯度来实现有用的非平衡状态。我们在实验中用超帕磁铁纳米颗粒在热力学平衡中形成具有强磁反应的同质功能流体(铁氟烷)。为了创建非平衡功能,我们用阴离子电荷控制剂为纳米颗粒充电,以创建电源流体,其中纳米颗粒充当电荷载体,可以用电场和电流到非均匀的耗散稳定稳态。耗散稳态表现出电压控制的磁性特性和新兴的扩散界面。弥漫接口对外部磁场的反应强烈,导致耗散模式在平衡状态下是不可能的。我们确定了这些耗散模式的最接近的非隔离类似物,讨论差异,并强调了电交融流体中的模式形成如何与可以直接量化的耗散有关。除了电力控制的铁体流体和模式之外,我们预见到该概念可以推广到其他功能性纳米颗粒,以创建具有光学,电气,催化和机械响应的各种科学和技术相关的非平衡状态,而热力学平衡不可能。

Materials with continuous dissipation can exhibit responses and functionalities that are not possible in thermodynamic equilibrium. While this concept is well-known, a major challenge has been the implementation: how to rationally design materials with functional non-equilibrium states and quantify the dissipation? Here we address these questions for the widely used colloidal nanoparticles that convey several functionalities. We propose that useful non-equilibrium states can be realised by creating and maintaining steady-state nanoparticle concentration gradients by continuous injection and dissipation of energy. We experimentally demonstrate this with superparamagnetic iron oxide nanoparticles that in thermodynamic equilibrium form a homogeneous functional fluid with a strong magnetic response (a ferrofluid). To create non-equilibrium functionalities, we charge the nanoparticles with anionic charge control agents to create electroferrofluids where nanoparticles act as charge carriers that can be driven with electric fields and current to non-homogeneous dissipative steady-states. The dissipative steady-states exhibit voltage-controlled magnetic properties and emergent diffuse interfaces. The diffuse interfaces respond strongly to external magnetic fields, leading to dissipative patterns that are not possible in the equilibrium state. We identify the closest non-dissipative analogues of these dissipative patterns, discuss the differences, and highlight how pattern formation in electroferrofluids is linked to dissipation that can be directly quantified. Beyond electrically controlled ferrofluids and patterns, we foresee that the concept can be generalized to other functional nanoparticles to create various scientifically and technologically relevant non-equilibrium states with optical, electrical, catalytic, and mechanical responses that are not possible in thermodynamic equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源