论文标题

用于主动监视高性能计算作为服务(HPCAAS)云环境的机器学习算法

Machine Learning Algorithms for Active Monitoring of High Performance Computing as a Service (HPCaaS) Cloud Environments

论文作者

Longoni, Gianluca, LaMothe, Ryan, Teuton, Jeremy, Greaves, Mark, Nichols, Nicole, Smith, William

论文摘要

云计算为可以满足任何计算需求的庞大可重新配置资源提供了无处不在的按需访问。许多服务模型都可以使用,但是通过网络通过大量的云计算节点进行联网,基础架构作为服务(IAAS)模型特别适合作为高性能计算平台(HPC)平台运行。我们使用了太平洋西北国家实验室(PNNL)云计算环境来执行我们的实验。许多云计算提供商,例如Amazon Web服务,Microsoft Azure或IBM Cloud,都提供灵活且可扩展的计算资源。本文探讨了使用隐私保存功能作为统计模型的输入,在云基础架构上运行的工程应用程序类型。这项工作中考虑的工程应用程序包括MCNP6,这是由Los Alamos国家实验室,OpenFOAM,开源计算流体动力学代码和CADO-NFS开发的辐射传输代码,以及用于质量数量分数的一般数字筛选算法的数值实现。我们的实验使用OpenStack Cloud Management工具来创建云HPC环境和隐私保护天花板计费表作为分类功能,以证明对这些应用程序的识别。

Cloud computing provides ubiquitous and on-demand access to vast reconfigurable resources that can meet any computational need. Many service models are available, but the Infrastructure as a Service (IaaS) model is particularly suited to operate as a high performance computing (HPC) platform, by networking large numbers of cloud computing nodes. We used the Pacific Northwest National Laboratory (PNNL) cloud computing environment to perform our experiments. A number of cloud computing providers such as Amazon Web Services, Microsoft Azure, or IBM Cloud, offer flexible and scalable computing resources. This paper explores the viability identifying types of engineering applications running on a cloud infrastructure configured as an HPC platform using privacy preserving features as input to statistical models. The engineering applications considered in this work include MCNP6, a radiation transport code developed by Los Alamos National Laboratory, OpenFOAM, an open source computational fluid dynamics code, and CADO-NFS, a numerical implementation of the general number field sieve algorithm used for prime number factorization. Our experiments use the OpenStack cloud management tool to create a cloud HPC environment and the privacy preserving Ceilometer billing meters as classification features to demonstrate identification of these applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源