论文标题
Rubik:用于高效图形学习的层次结构
Rubik: A Hierarchical Architecture for Efficient Graph Learning
论文作者
论文摘要
图形卷积网络(GCN)是一个有前途的方向,是学习在广泛应用程序(例如电子商务,社交网络和知识图)中常用的图形数据中的归纳表示。但是,从图形中学习是非平凡的,因为其混合计算模型涉及图分析和神经网络计算。为此,我们将GCN学习分解为两个层次结构范式:图形和节点级计算。这样的层次结构范式有助于用于GCN学习的软件和硬件加速度。 我们提出了一种轻巧的图形重新排序方法,并与GCN加速器架构结合在一起,该架构为定制的高速缓存设计,以充分利用图形级别的数据重复使用。我们还提出了一种映射方法,了解数据重用和任务级并行性,以有效地处理各种图形输入。结果表明,与不同数据集和GCN模型相比,Rubik Accelerator设计比GPU平台提高了26.3倍至1375.2倍。
Graph convolutional network (GCN) emerges as a promising direction to learn the inductive representation in graph data commonly used in widespread applications, such as E-commerce, social networks, and knowledge graphs. However, learning from graphs is non-trivial because of its mixed computation model involving both graph analytics and neural network computing. To this end, we decompose the GCN learning into two hierarchical paradigms: graph-level and node-level computing. Such a hierarchical paradigm facilitates the software and hardware accelerations for GCN learning. We propose a lightweight graph reordering methodology, incorporated with a GCN accelerator architecture that equips a customized cache design to fully utilize the graph-level data reuse. We also propose a mapping methodology aware of data reuse and task-level parallelism to handle various graphs inputs effectively. Results show that Rubik accelerator design improves energy efficiency by 26.3x to 1375.2x than GPU platforms across different datasets and GCN models.