论文标题
如何在暗物质光环中进行经验模型的星形形成:I。从数值模拟中推论中央星系的推论
How to empirically model star formation in dark matter halos: I. Inferences about central galaxies from numerical simulations
论文作者
论文摘要
我们使用TNG和Eagle流体动力模拟来研究星系中基于光环的恒星形成所需的中心星系 - 暗物质光环关系。使用线性尺寸还原算法和模型集合方法,我们发现,对于星形和淬火星系,恒星形成历史(SFH)与光晕质量组装历史(MAH)密切相关。低质量星系的淬灭主要是由于与附近的大量光环有关的输入次数驱动过程,而高质量星系的淬灭与宿主光环中大型祖细胞的形成密切相关。仅基于光晕特性的星形成和淬火种群的分类包含样本不平衡和两个种群重叠分布产生的污染。在流体动力模拟的结果的指导下,我们建立了一个经验模型,以基于其宿主光环的MAH预测中央星系的SFH,并分别对星形成和淬火的种群进行建模。我们的模型基于从流体动力模拟中采用恒星形成模板以降低模型复杂性的想法。我们使用各种测试来证明该模型可以恢复单个星系的星形形成历史,并且可以从统计学上再现星系双峰分布,恒星质量 - 光晕质量和恒星形成率 - 从低红移到高红移和组装偏置的光环质量关系。我们的研究提供了一个使用流体动力模拟发现并激发关键成分使用光环特性建模星系形成的框架。
We use TNG and EAGLE hydrodynamic simulations to investigate the central galaxy - dark matter halo relations that are needed for a halo-based empirical model of star formation in galaxies. Using a linear dimension reduction algorithm and a model ensemble method, we find that for both star-forming and quenched galaxies, the star formation history (SFH) is tightly related to the halo mass assembly history (MAH). The quenching of a low-mass galaxy is mainly due to the infall-ejection process related to a nearby massive halo, while the quenching of a high-mass galaxy is closely related to the formation of a massive progenitor in its host halo. The classification of star-forming and quenched populations based solely on halo properties contains contamination produced by sample imbalance and overlapping distributions of the two populations. Guided by the results from hydrodynamic simulations, we build an empirical model to predict the SFH of central galaxies based on the MAH of their host halos, and we model the star-forming and quenched populations separately. Our model is based on the idea of adopting star formation templates from hydrodynamic simulations to reduce model complexity. We use various tests to demonstrate that the model can recover star formation histories of individual galaxies, and can statistically reproduce the galaxy bimodal distribution, stellar mass - halo mass and star formation rate - halo mass relations from low to high redshift, and assembly bias. Our study provides a framework of using hydrodynamic simulations to discover, and to motivate the use of, key ingredients to model galaxy formation using halo properties.