论文标题

BI错误方法的理论理由

Theoretical Justification of the Bi Error Method

论文作者

Bleile, MaryLena

论文摘要

$ p $值的使用不正确,尤其是在使用任意.05阈值进行显着测试的背景下,已成为现代统计实践中的一个主要问题。这个问题的流行率可以追溯到通常教给大学生的无上下文的5步方法:我们教它是因为它是所做的,我们这样做是因为这是我们所教的。对于不是正式统计学家的统计学家的实践者,这一点尤其如此。因此,为了改善科学实践并克服统计二分法,有必要可替代5步方法。我们提出了一种基础化方法,该方法将Youden指数作为潜在的决策阈值,在文献中已证明该阈值与中性区域结合使用。与传统的5步方法不同,我们的5步方法(BI错误方法)允许进行中性结果,不需要$ p $值,并且不提供任何默认阈值值。相反,我们的方法明确需要上下文错误分析以及统计功率的量化。此外,由于缺乏对P值的使用,该方法具有提高的可访问性。 Youden指数的广义分析推导支持此可访问性。

Incorrect usage of $p$-values, particularly within the context of significance testing using the arbitrary .05 threshold, has become a major problem in modern statistical practice. The prevalence of this problem can be traced back to the context-free 5-step method commonly taught to undergraduates: we teach it because it is what is done, and we do it because it is what we are taught. This hold particularly true for practitioners of statistics who are not formal statisticians. Thus, in order to improve scientific practice and overcome statistical dichotomania, an accessible replacement for the 5-step method is warranted. We propose a method foundational on the utilization of the Youden Index as a potential decision threshold, which has been shown in the literature to be effective in conjunction with neutral zones. Unlike the traditional 5-step method, our 5-step method (the Bi Error method) allows for neutral results, does not require $p$-values, and does not provide any default threshold values. Instead, our method explicitly requires contextual error analysis as well as quantification of statistical power. Furthermore, and in part due to its lack of usage of p-values, the method sports improved accessibility. This accessibility is supported by a generalized analytical derivation of the Youden Index.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源