论文标题

小分子在聚合物网络中的纠缠和较弱的相互作用驱动的迁移率

Entanglement and weak interaction driven mobility of small molecules in polymer networks

论文作者

Guha, Rajarshi, Ghosh, Subhadip, Velegol, Darrell, Butler, Peter J., Sen, Ayusman, Ross, Jennifer L.

论文摘要

小分子在生物学和合成材料系统的内部结构中的扩散运输很复杂,因为拥挤的环境呈现出化学和物理障碍。我们使用小型染料分子的合成实验系统在短时间尺度上探索了这种迁移率。我们发现,聚合物的存在抑制了惰性分子的扩散。相反的,小的,疏水的小分子显示出较小的迁移率降低,并且能够通过利用拥挤的特定参数来更快地通过系统扩散。我们通过开发从头模型并使用这些结果来解释了这种现象,我们假设分子和聚合物链之间的非特异性疏水相互作用可以将分子定位于重叠和纠缠的链的隔室中,在这些链条中,它们会经历微型粘度,而不是大型持续性。我们引入了一个特征交互时间参数,以根据摩擦效应和分子相互作用来定量解释实验结果。我们的模型与实验结果非常吻合,并使我们能够仅基于相互作用将分子分为两个不同的迁移率类别。通过更改表面组,聚合物分子量,并通过向培养基添加盐,我们可以进一步调节相互作用分子的迁移率和均方根位移。我们的工作对理解微管网络和其他具有大分子拥挤的系统的细胞内扩散运输具有影响,并可能导致合成聚合物系统中的运输增强。

Diffusive transport of small molecules within the internal structures of biological and synthetic material systems is complex because the crowded environment presents chemical and physical barriers to mobility. We explored this mobility using a synthetic experimental system of small dye molecules diffusing within a polymer network at short time scales. We find that the diffusion of inert molecules is inhibited by the presence of the polymers. Counter-intuitively, small, hydrophobic molecules display smaller reduction in mobility and also able to diffuse faster through the system by leveraging crowding specific parameters. We explained this phenomenon by developing a de novo model and using these results, we hypothesized that non-specific hydrophobic interactions between the molecules and polymer chains could localize the molecules into compartments of overlapped and entangled chains where they experience microviscosity, rather than macroviscosity. We introduced a characteristic interaction time parameter to quantitatively explain experimental results in the light of frictional effects and molecular interactions. Our model is in good agreement with the experimental results and allowed us to classify molecules into two different mobility categories solely based on interaction. By changing the surface group, polymer molecular weight, and by adding salt to the medium, we could further modulate the mobility and mean square displacements of interacting molecules. Our work has implications in understanding intracellular diffusive transport in microtubule networks and other systems with macromolecular crowding and could lead to transport enhancement in synthetic polymer systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源