论文标题
CRAHCN-O:在CO2-,N2-,H2O-,CH4-和H2主导的大气中,用于氰化氢和甲醛化学的大气杂化化学网络氧延伸的一致性减少
CRAHCN-O: A Consistent Reduced Atmospheric Hybrid Chemical Network Oxygen Extension for Hydrogen Cyanide and Formaldehyde Chemistry in CO2-, N2-, H2O-, CH4-, and H2-Dominated Atmospheres
论文作者
论文摘要
氰化氢(HCN)和甲醛(H2CO)是行星大气中生物分子(例如核碱基和氨基酸)的关键前体。但是,文献中仍然缺少许多在包含二氧化碳和H2O的大气中产生和破坏这些物种的反应。我们使用量子化学方法来找到这些缺失的反应,并使用bhandhlyp/aug-cc-pvdz理论水平的规范变异过渡状态理论和水稻 - ramsperger-kassel-marcus/master方程理论来计算其速率系数。我们计算了126个总反应的速率系数,并通过与39%的可用情况下的实验数据进行比较来验证我们的计算。我们计算出的速率系数最常在实验值的2倍以下,并且通常始终在这些值的数量级内。我们发现了45个以前未知的反应,并从该列表中识别出6个最有可能占主导地位的H2CO和HCN产生和破坏行星气氛中的反应。我们重点介绍$^1 $ o + CH3 $ \ rightArrow $ H2CO + H作为新的关键来源,H2CO + $^1 $ o $ $ $ \ rightarrow $ hco + oh oh oh oh oh oh oh oh as sun Key键,用于上层行星气氛中的H2CO。在这项工作中,我们开发了氧气扩展,以减少大气混合化学网络(CRAHCN-O),建立了我们先前开发的用于N2-,CH4-和H2主导大气中HCN生产的网络(CRAHCN)。该扩展可用于模拟由CO2,N2,H2O,CH4和H2的任何一个主导的大气中的HCN和H2CO产生。
Hydrogen cyanide (HCN) and formaldehyde (H2CO) are key precursors to biomolecules such as nucleobases and amino acids in planetary atmospheres; However, many reactions which produce and destroy these species in atmospheres containing CO2 and H2O are still missing from the literature. We use a quantum chemistry approach to find these missing reactions and calculate their rate coefficients using canonical variational transition state theory and Rice-Ramsperger-Kassel-Marcus/master equation theory at the BHandHLYP/aug-cc-pVDZ level of theory. We calculate the rate coefficients for 126 total reactions, and validate our calculations by comparing with experimental data in the 39% of available cases. Our calculated rate coefficients are most frequently within an factor of 2 of experimental values, and generally always within an order of magnitude of these values. We discover 45 previously unknown reactions, and identify 6 from this list that are most likely to dominate H2CO and HCN production and destruction in planetary atmospheres. We highlight $^1$O + CH3 $\rightarrow$ H2CO + H as a new key source, and H2CO + $^1$O $\rightarrow$ HCO + OH as a new key sink, for H2CO in upper planetary atmospheres. In this effort, we develop an oxygen extension to our consistent reduced atmospheric hybrid chemical network (CRAHCN-O), building off our previously developed network for HCN production in N2-, CH4-, and H2-dominated atmospheres (CRAHCN). This extension can be used to simulate both HCN and H2CO production in atmospheres dominated by any of CO2, N2, H2O, CH4, and H2.