论文标题
makemake + sedna:天体物理牛顿流体动力学的连续辐射传输和光电离心框架
Makemake + Sedna: A Continuum Radiation Transport and Photoionization Framework for Astrophysical Newtonian Fluid Dynamics
论文作者
论文摘要
天体物理流体流量研究通常包含广泛的物理过程,以说明正在考虑的系统的复杂性。除了重力外,通过连续辐射传输和/或光电离的适当处理热力学过程也已成为艺术的状态。我们介绍了连续辐射传输模块Makemake的重大更新,以及一个新开发的光电离子SEDNA模块,与磁流失动力学代码冥王星耦合。这些扩展目前尚未公开可用;可以逐案授予访问。我们解释了求解的方程式的理论背景,并详细介绍了数值布局,并提供了用于放射电离流体动力学的综合测试套件。基于网格的辐射和电离模块支持笛卡尔,圆柱形和球形坐标中的静态一维,二维和三维网格。每个模块将辐射场分解为两个组件,一个直接源自点源 - 使用射线跟踪方案求解 - 用三维通量限制扩散(FLD)求解器求解的弥漫组分 - 溶液。连续辐射传输的FLD求解器利用平衡的一个温度方法或线性化的两温度方法。光电离模块的FLD求解器可以考虑辐射场的时间演变,从将自由电子直接重组为氢的基态,以替代现场近似。简要概述了完整和正在进行的科学研究,以明确说明所介绍的数值框架的多功能性质。
Astrophysical fluid flow studies often encompass a wide range of physical processes to account for the complexity of the system under consideration. In addition to gravity, a proper treatment of thermodynamic processes via continuum radiation transport and/or photoionization is becoming the state of the art. We present a major update of our continuum radiation transport module, MAKEMAKE, and a newly developed module for photoionization, SEDNA, coupled to the magnetohydrodynamics code PLUTO. These extensions are currently not publicly available; access can be granted on a case-by-case basis. We explain the theoretical background of the equations solved, elaborate on the numerical layout, and present a comprehensive test suite for radiation-ionization hydrodynamics. The grid-based radiation and ionization modules support static one-dimensional, two-dimensional, and three-dimensional grids in Cartesian, cylindrical, and spherical coordinates. Each module splits the radiation field into two components, one originating directly from a point source - solved using a ray-tracing scheme - and a diffuse component - solved with a three-dimensional flux-limited diffusion (FLD) solver. The FLD solver for the continuum radiation transport makes use of either the equilibrium one-temperature approach or the linearization two-temperature approach. The FLD solver for the photoionization module enables accounting for the temporal evolution of the radiation field from direct recombination of free electrons into hydrogen's ground state as an alternative to the on-the-spot approximation. A brief overview of completed and ongoing scientific studies is given to explicitly illustrate the multipurpose nature of the numerical framework presented.