论文标题

基于ML的可视化建议:学习从数据推荐可视化

ML-based Visualization Recommendation: Learning to Recommend Visualizations from Data

论文作者

Qian, Xin, Rossi, Ryan A., Du, Fan, Kim, Sungchul, Koh, Eunyee, Malik, Sana, Lee, Tak Yeon, Chan, Joel

论文摘要

可视化建议旨在自动生成,评分和推荐给用户有用的可视化,并且对于探索和获得对新数据集或现有数据集的见解至关重要。在这项工作中,我们提出了第一个基于端到端ML的可视化建议系统,该系统将大量数据集和可视化的输入作为输入,根据此数据学习一个模型。然后,给定一个新的看不见的数据集,该模型会自动生成该新数据集的可视化,从而为可视化得出得分,并输出通过有效性订购的用户的建议可视化列表。我们还描述了一个评估框架,以定量评估从大量可视化和数据集中汲取的可视化建议模型。通过定量实验,用户研究和定性分析,我们表明我们的基于端到ML的系统建议与现有的基于最新规则的系统相比,建议更有效和有用的可视化。最后,我们在用户研究中观察到人类专家对基于ML的系统建议的可视化而不是基于规则的系统(5.92的7点李克特量表,而仅为3.45)。

Visualization recommendation seeks to generate, score, and recommend to users useful visualizations automatically, and are fundamentally important for exploring and gaining insights into a new or existing dataset quickly. In this work, we propose the first end-to-end ML-based visualization recommendation system that takes as input a large corpus of datasets and visualizations, learns a model based on this data. Then, given a new unseen dataset from an arbitrary user, the model automatically generates visualizations for that new dataset, derive scores for the visualizations, and output a list of recommended visualizations to the user ordered by effectiveness. We also describe an evaluation framework to quantitatively evaluate visualization recommendation models learned from a large corpus of visualizations and datasets. Through quantitative experiments, a user study, and qualitative analysis, we show that our end-to-end ML-based system recommends more effective and useful visualizations compared to existing state-of-the-art rule-based systems. Finally, we observed a strong preference by the human experts in our user study towards the visualizations recommended by our ML-based system as opposed to the rule-based system (5.92 from a 7-point Likert scale compared to only 3.45).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源