论文标题

关于强大的网络设计的近似性

On the Approximability of Robust Network Design

论文作者

Al-Najjar, Yacine, Ben-Ameur, Walid, Leguay, Jeremie

论文摘要

鉴于流量的动态性质,我们研究了鲁棒网络设计的变体,我们必须确定在每个链接上保留的能力,以便可以路由属于多面体集合的每个需求向量。目的是最大程度地减少拥塞或线性成本。假定路由是分数和动态的(即取决于当前的流量向量)。我们首先证明,在任何恒定因素内都无法近似具有最小拥塞的强大网络设计问题。然后,使用ETH猜想,我们获得了$ω(\ frac {\ log n} {\ log \ log n})$下限此问题的近似性。这意味着Räcke于2008年建立的众所周知的$ O(\ log n)$近似值很紧。使用Lagrange放松,我们获得了$ O(\ log n)$近似的新证明。基于拉格朗日的减少和我们的不可Ximimition结果的重要结果是,在任何恒定比率之内都不能近似于线性预订成本的强大网络设计问题。这回答了Chekuri(2007)的长期开放问题。我们还提供了Goyal \&Al(2009)结果的另一个证明,表明静态路由下的最佳线性成本可以是$ω(\ log n)$ $贵,而不是在动态路由下获得的成本。最后,我们表明,即使每种商品仅允许两条给定的路径,在某个常数之内,很难近似于最低拥塞或线性成本的强大网络设计问题。

Given the dynamic nature of traffic, we investigate the variant of robust network design where we have to determine the capacity to reserve on each link so that each demand vector belonging to a polyhedral set can be routed. The objective is either to minimize congestion or a linear cost. Routing is assumed to be fractional and dynamic (i.e., dependent on the current traffic vector). We first prove that the robust network design problem with minimum congestion cannot be approximated within any constant factor. Then, using the ETH conjecture, we get a $Ω(\frac{\log n}{\log \log n})$ lower bound for the approximability of this problem. This implies that the well-known $O(\log n)$ approximation ratio established by Räcke in 2008 is tight. Using Lagrange relaxation, we obtain a new proof of the $O(\log n)$ approximation. An important consequence of the Lagrange-based reduction and our inapproximability results is that the robust network design problem with linear reservation cost cannot be approximated within any constant ratio. This answers a long-standing open question of Chekuri (2007). We also give another proof of the result of Goyal\&al (2009) stating that the optimal linear cost under static routing can be $Ω(\log n)$ more expensive than the cost obtained under dynamic routing. Finally, we show that even if only two given paths are allowed for each commodity, the robust network design problem with minimum congestion or linear cost is hard to approximate within some constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源