论文标题

单一政治多项式的统一交叉点不可能

Uniform unlikely intersections for unicritical polynomials

论文作者

Fu, Hang

论文摘要

修复$ d \ geq2 $,让$ f_ {t}(z)= z^{d}+t $是由$ t \ in \ mathbb {c} $参数化的多项式的家族。在本文中,我们将证明存在一个常数$ c(d)$,以便对于任何$ a,b \ in \ mathbb {c} $,带有$ a^{d} \ neq b^{d} $,$ t \ in \ mathbb {c}的$ t \ in \ mathbb {c} $ a $ a $ a $和$ b $ a $ ins $ iS $ f_ at $ f_ a $ f_ a $ c $ c)

Fix $d\geq2$ and let $f_{t}(z)=z^{d}+t$ be the family of polynomials parameterized by $t\in\mathbb{C}$. In this article, we will show that there exists a constant $C(d)$ such that for any $a,b\in\mathbb{C}$ with $a^{d}\neq b^{d}$, the number of $t\in\mathbb{C}$ such that $a$ and $b$ are both preperiodic for $f_{t}$ is at most $C(d)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源