论文标题

混沌系统中任意轨迹的同型轨道扩展:经典作用及其记忆

Homoclinic orbit expansion of arbitrary trajectories in chaotic systems: classical action function and its memory

论文作者

Li, Jizhou, Tomsovic, Steven

论文摘要

混沌系统中的轨道特殊子集,例如周期性的轨道,杂斜轨道,闭合的轨道,可以将其视为构建系统动态的骨架或脚手架。特别是,如先前出版物中所证明的[物理学。 Rev. E 95,062224(2017),物理。 Rev. E 97,02216(2018)],同型轨道轨道的测定足以确切地计算不稳定周期性轨道的经典作用函数,这些轨道的经典作用函数在半经典痕迹公式中具有潜在的应用。这里的这项工作概括为在多维混沌汉密尔顿系统中任意轨迹段的经典作用函数的计算。不稳定的轨迹片段的动作被扩展到同型轨道轨道作用的线性组合中,这些轨道轨道作用以零件的方式遮蔽了它们。结果使自己具有近似值,并具有可控的小错误,这表明了对过去和未来的细分市场经典作用的记忆迅速丧失。此外,它不需要实际构造轨迹段,而只需要其马尔可夫分区序列。还提出了另一种观点,它是将轨迹分为短暂访问到连续的周期性轨道附近的短段中的轨迹,从而产生了与同等于轨道轨道扩展相同的周期性轨道扩展方案。这清楚地表明,同等轨道和周期性轨道是相位空间动力学的同样有效的骨骼结构。

Special subsets of orbits in chaotic systems, e.g. periodic orbits, heteroclinic orbits, closed orbits, can be considered as skeletons or scaffolds upon which the full dynamics of the system is built. In particular, as demonstrated in previous publications [Phys. Rev. E 95, 062224 (2017), Phys. Rev. E 97, 022216 (2018)], the determination of homoclinic orbits is sufficient for the exact calculation of classical action functions of unstable periodic orbits, which have potential applications in semiclassical trace formulas. Here this previous work is generalized to the calculation of classical action functions of arbitrary trajectory segments in multidimensional chaotic Hamiltonian systems. The unstable trajectory segments' actions are expanded into linear combinations of homoclinic orbit actions that shadow them in a piece-wise fashion. The results lend themselves to an approximation with controllable exponentially small errors, and which demonstrates an exponentially rapid loss of memory of a segment's classical action to its past and future. Furthermore, it does not require an actual construction of the trajectory segment, only its Markov partition sequence. An alternative point of view is also proposed which partitions the trajectories into short segments of transient visits to the neighborhoods of successive periodic orbits, giving rise to a periodic orbit expansion scheme which is equivalent to the homoclinic orbit expansion. This clearly demonstrates that homoclinic and periodic orbits are equally valid skeletal structures for the tessellation of phase-space dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源