论文标题
潜在因果社会经济健康指数
Latent Causal Socioeconomic Health Index
论文作者
论文摘要
这项研究开发了一个基于模型的潜在因果社会经济健康(LACSH)指数。由于需要整体国家福祉指数的需要,我们以潜在的健康因素指数(LHFI)方法为基础,该方法已用于评估无法观察到的生态/生态系统健康。 LHFI整合了指标,潜在健康和驱动健康概念的协变量之间的关系。在本文中,LHFI结构与空间建模和统计因果建模集成在一起。我们的努力集中在开发综合框架上,以促进对观察性连续变量的理解,如何影响出现空间相关性的潜在特征。对于连续策略(治疗)变量的情况,还引入了一种评估协变量平衡的新型可视化技术。我们由此产生的LACSH框架和可视化工具通过两个有关国家社会经济健康(潜在特征)的全球案例研究进行了说明,每个案例研究与社会健康的不同方面有关,分别具有各种指标和协变量,而治疗变量分别是强制性的孕妇休假日和政府在医疗保健上的支出。我们通过两项模拟研究验证了模型。所有方法均在贝叶斯分层框架中结构化,结果由马尔可夫链蒙特卡洛技术获得。
This research develops a model-based LAtent Causal Socioeconomic Health (LACSH) index at the national level. Motivated by the need for a holistic national well-being index, we build upon the latent health factor index (LHFI) approach that has been used to assess the unobservable ecological/ecosystem health. LHFI integratively models the relationship between metrics, latent health, and covariates that drive the notion of health. In this paper, the LHFI structure is integrated with spatial modeling and statistical causal modeling. Our efforts are focused on developing the integrated framework to facilitate the understanding of how an observational continuous variable might have causally affected a latent trait that exhibits spatial correlation. A novel visualization technique to evaluate covariate balance is also introduced for the case of a continuous policy (treatment) variable. Our resulting LACSH framework and visualization tool are illustrated through two global case studies on national socioeconomic health (latent trait), each with various metrics and covariates pertaining to different aspects of societal health, and the treatment variable being mandatory maternity leave days and government expenditure on healthcare, respectively. We validate our model by two simulation studies. All approaches are structured in a Bayesian hierarchical framework and results are obtained by Markov chain Monte Carlo techniques.