论文标题

拓扑传播的宽带频率和平均按需剪裁利用压电材料

Broadband Frequency and Spatial On-Demand Tailoring of Topological Wave Propagation Harnessing Piezoelectric Metamaterials

论文作者

Dorin, Patrick, Wang, Kon-Well

论文摘要

最近的研究开发了可调的拓扑弹性超材料,以在存在不同的外部条件的情况下最大化性能,适应不断变化的操作要求,并启用新功能,例如可编程波路。但是,仍然是实现可调拓扑的超材料的挑战,该拓扑超材料在频率和空间结构域中都可以全面适应,并且在包括亚波长度的较大频率带宽上是有效的。为了推进最新技术的状态,这项研究提出了一种压电分流材料,具有同时使用谐振电路来同时量身定制拓扑波的频率,路径和模式。在本手稿中提出的研究中,使用平面波膨胀方法来检测周期单元池的频带结构中的频率调节次波长点,并发现一个可以在其上存在拓扑波传播的工作区域。有限条带的分散分析阐明了如何利用电路参数来调整与拓扑边缘状态相对应的模式形状。进一步的评估提供了有关如何利用增加机电耦合和晶格重新配置的洞察力,以增强拓扑波传播的频率范围,增加可实现的模式定位并达到其他边缘状态。在薄板结构的数值模拟中说明了拓扑引导波传播本质上是自然界的,在路径,定位和频率中的自适应。提出的工作的结果表明,可以在需要宽频率带宽的应用程序中使用易于整合且可全面调整的超材料的超材料。

Recent studies have developed tunable topological elastic metamaterials to maximize performance in the presence of varying external conditions, adapt to changing operating requirements, and enable new functionalities such as a programmable wave path. However, a challenge remains to achieve a tunable topological metamaterial that is comprehensively adaptable in both the frequency and spatial domains and is effective over a broad frequency bandwidth that includes a subwavelength regime. To advance the state of the art, this research presents a piezoelectric metamaterial with the capability to concurrently tailor the frequency, path, and mode shape of topological waves using resonant circuitry. In the research presented in this manuscript, the plane wave expansion method is used to detect a frequency tunable subwavelength Dirac point in the band structure of the periodic unit cell and discover an operating region over which topological wave propagation can exist. Dispersion analyses for a finite strip illuminate how circuit parameters can be utilized to adjust mode shapes corresponding to topological edge states. A further evaluation provides insight into how increased electromechanical coupling and lattice reconfiguration can be exploited to enhance the frequency range for topological wave propagation, increase achievable mode localization, and attain additional edge states. Topological guided wave propagation that is subwavelength in nature and adaptive in path, localization, and frequency is illustrated in numerical simulations of thin plate structures. Outcomes from the presented work indicate that the easily integrable and comprehensively tunable proposed metamaterial could be employed in applications requiring a multitude of functions over a broad frequency bandwidth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源