论文标题

IDLA与无限的许多资源和指导的IDLA森林聚集在一起

IDLA aggregates with infinitely many sources and the directed IDLA forest

论文作者

Chenavier, Nicolas, Coupier, David, Rousselle, Arnaud

论文摘要

我们研究了三种类型的内部扩散限制聚合(IDLA)模型。这些模型基于$ \ mathbf {z}^2 $上的简单随机步行,无限多个来源是垂直轴$ i(\ infty)= \ {0 \} \ times \ times \ mathbf {z} $的点。提供了各种特性,例如平稳性,混合,稳定和形状定理。我们的结果使我们能够根据IDLA协议定义一个新的定向(W.R.T.水平方向)随机森林跨越$ \ Mathbf {z}^2 $,该协议在分布W.R.T.中是不变的。垂直翻译。

We investigate three types of Internal Diffusion Limited Aggregation (IDLA) models. These models are based on simple random walks on $\mathbf{Z}^2$ with infinitely many sources that are the points of the vertical axis $I(\infty)=\{0\}\times\mathbf{Z}$. Various properties are provided, such as stationarity, mixing, stabilization and shape theorems. Our results allow us to define a new directed (w.r.t. the horizontal direction) random forest spanning $\mathbf{Z}^2$, based on an IDLA protocol, which is invariant in distribution w.r.t. vertical translations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源