论文标题

使用交叉植物生成堆栈的深层对抗过渡学习

Deep Adversarial Transition Learning using Cross-Grafted Generative Stacks

论文作者

Hou, Jinyong, Ding, Xuejie, Cranefield, Stephen, Deng, Jeremiah D.

论文摘要

计算机视觉中使用的当前深区适应方法主要集中于学习跨不同领域的歧视性和域名特征。在本文中,我们提出了一种新颖的“深层对抗过渡学习”(DATL)框架,该框架通过将源和目标域和目标域投影到中间,过渡空间中,通过使用可调节的,可调节的,可调节的,可调节的,跨移植的生成网络堆栈以及在过渡之间的有效对抗性学习来弥合域间隙。具体而言,我们为两个域构建了变异自动编码器(VAE),并通过交叉跨越VAE的解码器堆栈来形成双向转变。此外,使用生成对抗网络(GAN)进行域适应,将目标域数据映射到源域的已知标签空间。因此,整体适应过程包括三个阶段:VAE的特征表示学习,过渡生成和GAN的过渡对准。实验结果表明,我们的方法在许多无监督的域适应基准上都优于最先进的方法。

Current deep domain adaptation methods used in computer vision have mainly focused on learning discriminative and domain-invariant features across different domains. In this paper, we present a novel "deep adversarial transition learning" (DATL) framework that bridges the domain gap by projecting the source and target domains into intermediate, transitional spaces through the employment of adjustable, cross-grafted generative network stacks and effective adversarial learning between transitions. Specifically, we construct variational auto-encoders (VAE) for the two domains, and form bidirectional transitions by cross-grafting the VAEs' decoder stacks. Furthermore, generative adversarial networks (GAN) are employed for domain adaptation, mapping the target domain data to the known label space of the source domain. The overall adaptation process hence consists of three phases: feature representation learning by VAEs, transitions generation, and transitions alignment by GANs. Experimental results demonstrate that our method outperforms the state-of-the art on a number of unsupervised domain adaptation benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源