论文标题

较低$ n $ n $加权的RICCI曲率界限的刚度现象与$ \ varepsilon $ - 不对称laplacian

Rigidity phenomena on lower $N$-weighted Ricci curvature bounds with $\varepsilon$-range for non-symmetric Laplacian

论文作者

Kuwae, Kazuhiro, Sakurai, Yohei

论文摘要

Lu-Minguzzi Ohta引入了较低的$ n $ n $加权的RICCI曲率,并带有$ \ varepsilon $ range,并从加权laplacian的laplacian比较定理中得出了几种比较几何估计。本文的目的是研究其比较几何结果的平等案例的各种刚性现象。我们将获得有关拉普拉斯比较定理,直径比较和体积比较的刚度结果。我们还将它们的作品推广到从载体场电位引起的非对称拉普拉斯。

Lu-Minguzzi-Ohta have introduced the notion of a lower $N$-weighted Ricci curvature bound with $\varepsilon$-range, and derived several comparison geometric estimates from a Laplacian comparison theorem for weighted Laplacian. The aim of this paper is to investigate various rigidity phenomena for the equality case of their comparison geometric results. We will obtain rigidity results concerning the Laplacian comparison theorem, diameter comparisons, and volume comparisons. We also generalize their works for non-symmetric Laplacian induced from vector field potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源