论文标题
作用于空载体的几何有限基团的轨道分布
Distribution of orbits of geometrically finite groups acting on null vectors
论文作者
论文摘要
我们研究了在$ \ operatoTorname {so}(so}(n,1)$上作用于$ \ m arthbb {r}^{n+1} $,以及更普遍地在$ \ operatotorname {so so}(n,1)$的商标上。利用霍斯磷流的等分分配,我们获得了渐近学以分布轨道的一般几何有限基团的作用,并且我们获得了带有其他假设的定量陈述。
We study the distribution of non-discrete orbits of geometrically finite groups in $\operatorname{SO}(n,1)$ acting on $\mathbb{R}^{n+1}$, and more generally on the quotient of $\operatorname{SO}(n,1)$ by a horospherical subgroup. Using equidistribution of horospherical flows, we obtain both asymptotics for the distribution of orbits for the action of general geometrically finite groups, and we obtain quantitative statements with additional assumptions.