论文标题
打击莱姆病的计算机视觉方法
A Computer Vision Approach to Combat Lyme Disease
论文作者
论文摘要
莱姆病是一种感染性疾病,通过感染的ixodes物种的咬伤传播给人类(黑腿tick虫)。它是北美增长最快的媒介传播疾病之一,正在扩大其地理足迹。莱姆病治疗是时间敏感的,可以在ixodes物种tick咬一口后72小时内对患者进行抗生素(预防)治疗。但是,对可能带有细菌的每个壁虱的基于实验室的鉴定是耗时的和劳动的量很大,无法满足有效治疗的最大转折时间72小时。使用计算机视觉技术对黑腿滴答的早期识别是在关键的窗户期内迅速识别tick和管理预防的潜在解决方案。在这项工作中,我们构建了一个自动检测工具,可以使用先进的深度学习和计算机视觉方法将黑腿壁虱与其他壁虱物种区分开。我们使用卷积神经网络(CNN)模型展示了tick物种的分类,这些模型直接从tick图像端到端训练。采用教师学习框架内的先进知识转移技术来改善tick物种的分类。我们最好的CNN模型在测试集上的精度达到92%。该工具可以与暴露地理结合,以确定莱姆病感染的风险和预防治疗的需求。
Lyme disease is an infectious disease transmitted to humans by a bite from an infected Ixodes species (blacklegged ticks). It is one of the fastest growing vector-borne illness in North America and is expanding its geographic footprint. Lyme disease treatment is time-sensitive, and can be cured by administering an antibiotic (prophylaxis) to the patient within 72 hours after a tick bite by the Ixodes species. However, the laboratory-based identification of each tick that might carry the bacteria is time-consuming and labour intensive and cannot meet the maximum turn-around-time of 72 hours for an effective treatment. Early identification of blacklegged ticks using computer vision technologies is a potential solution in promptly identifying a tick and administering prophylaxis within a crucial window period. In this work, we build an automated detection tool that can differentiate blacklegged ticks from other ticks species using advanced deep learning and computer vision approaches. We demonstrate the classification of tick species using Convolution Neural Network (CNN) models, trained end-to-end from tick images directly. Advanced knowledge transfer techniques within teacher-student learning frameworks are adopted to improve the performance of classification of tick species. Our best CNN model achieves 92% accuracy on test set. The tool can be integrated with the geography of exposure to determine the risk of Lyme disease infection and need for prophylaxis treatment.