论文标题

在一个小世界中学习

Learning in a Small/Big World

论文作者

Leung, Benson Tsz Kin

论文摘要

复杂性和有限的能力对我们如何在不确定性下学习和做出决策具有深远的影响。本文利用有限自动机理论来建模信念形成,研究了大小世界中最佳学习行为的特征,在这种情况下,环境的复杂性分别相对于决策者的认知能力,分别是低和高的。在很小的世界中,贝叶斯的基准近似最佳行为,但随着世界的越来越大。此外,在大世界中,最佳学习行为可能表现出广泛的文献记载的非生婆物学习行为,包括使用启发式方法,相关性忽略,持续过度自信,不集中的学习以及模型简化或模型简化或不确定性的其他行为。这些结果在非基质学习行为,复杂性和认知能力的突出性之间建立了明确可检验的关系。

Complexity and limited ability have profound effect on how we learn and make decisions under uncertainty. Using the theory of finite automaton to model belief formation, this paper studies the characteristics of optimal learning behavior in small and big worlds, where the complexity of the environment is low and high, respectively, relative to the cognitive ability of the decision maker. Optimal behavior is well approximated by the Bayesian benchmark in very small world but is more different as the world gets bigger. In addition, in big worlds, the optimal learning behavior could exhibit a wide range of well-documented non-Bayesian learning behavior, including the use of heuristics, correlation neglect, persistent over-confidence, inattentive learning, and other behaviors of model simplification or misspecification. These results establish a clear and testable relationship among the prominence of non-Bayesian learning behavior, complexity, and cognitive ability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源