论文标题

在带有分段恒定电导率的随机热方程的轻度和弱解上

On mild and weak solutions for stochastic heat equations with piecewise-constant conductivity

论文作者

Mishura, Yuliya, Ralchenko, Kostiantyn, Zili, Mounir

论文摘要

我们以差异形式研究了一个随机部分微分方程,具有二阶椭圆形算子,具有分段常数扩散系数,并由时空白噪声驱动。我们引入了该方程式较弱的解决方案的概念,并证明了它与已知的轻度解决方案概念的等效性。

We investigate a stochastic partial differential equation with second order elliptic operator in divergence form, having a piecewise constant diffusion coefficient, and driven by a space-time white noise. We introduce a notion of weak solution of this equation and prove its equivalence to the already known notion of mild solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源