论文标题
对纯高斯州流形的本地优化
Local optimization on pure Gaussian state manifolds
论文作者
论文摘要
我们利用洞察力的见解来开发有效的局部优化算法,以极大化这些国家家庭的任意功能。该方法基于对局部几何形状调整的梯度下降的概念,这也允许实施局部约束。符号和正交组的自然组作用使我们能够有效地计算几何梯度。尽管状态的参数化基于协方差矩阵和线性复杂结构,但我们提供了紧凑的公式,可轻松地转换为高斯状态的其他参数化,例如纯高斯状态的波函数,准稳定性分布和Bogoliubov变换。我们审查了从近似地面状态到计算电路复杂性的应用程序,以及在全息图背景下使用的纯化纠缠。最后,我们使用所提出的方法收集数值和分析证据,以表明高斯纯化足以计算任意混合高斯州纯化的纠缠。
We exploit insights into the geometry of bosonic and fermionic Gaussian states to develop an efficient local optimization algorithm to extremize arbitrary functions on these families of states. The method is based on notions of gradient descent attuned to the local geometry which also allows for the implementation of local constraints. The natural group action of the symplectic and orthogonal group enables us to compute the geometric gradient efficiently. While our parametrization of states is based on covariance matrices and linear complex structures, we provide compact formulas to easily convert from and to other parametrization of Gaussian states, such as wave functions for pure Gaussian states, quasiprobability distributions and Bogoliubov transformations. We review applications ranging from approximating ground states to computing circuit complexity and the entanglement of purification that have both been employed in the context of holography. Finally, we use the presented methods to collect numerical and analytical evidence for the conjecture that Gaussian purifications are sufficient to compute the entanglement of purification of arbitrary mixed Gaussian states.