论文标题

从高丁整合型号到$ d $二维的多个共形块

From Gaudin Integrable Models to $d$-dimensional Multipoint Conformal Blocks

论文作者

Buric, Ilija, Lacroix, Sylvain, Mann, Jeremy A., Quintavalle, Lorenzo, Schomerus, Volker

论文摘要

在这项工作中,我们启动了一种基于整合性的方法,以用于更高维度的磁场理论的多点共形块。我们的主要观察结果是,对于$ n $ n $点功能的保形块可能被视为可集成的高丹汉密尔顿人的本征函数。这为我们提供了一组完整的微分方程,可用于评估多点块。

In this work we initiate an integrability-based approach to multipoint conformal blocks for higher dimensional conformal field theories. Our main observation is that conformal blocks for $N$-point functions may be considered as eigenfunctions of integrable Gaudin Hamiltonians. This provides us with a complete set of differential equations that can be used to evaluate multipoint blocks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源