论文标题
$ l^{a,b,c} $ QUIVER量规理论的非积分性
The non-integrability of $L^{a,b,c}$ quiver gauge theories
论文作者
论文摘要
我们表明,IIB类型中的$ ads_5 \ times l^{a,b,c} $解决方案是不可集成的。为此,我们考虑了嵌入弦的嵌入,并研究其波动,这些波动不承认liouville综合解决方案。我们还执行数值分析以研究字符串的时间演变并计算最大的Lyapunov指数。该分析表明弦运动是混乱的。最后,我们考虑了与箭量理论的BPS介子相对应的字符串的点状极限。
We show that the $AdS_5 \times L^{a,b,c}$ solution in type IIB theory is non-integrable. To do so, we consider a string embedding and study its fluctuations which do not admit Liouville integrable solutions. We, also, perform a numerical analysis to study the time evolution of the string and compute the largest Lyapunov exponent. This analysis indicates that the string motion is chaotic. Finally, we consider the point-like limit of the string that corresponds to BPS mesons of the quiver theory.