论文标题
受约束多体量子混沌系统的光谱统计
Spectral statistics in constrained many-body quantum chaotic systems
论文作者
论文摘要
我们研究具有现场阿贝尔对称性或局部约束的空间扩展多体量子系统的光谱统计,主要集中于保守偶极子和较高矩的人。在较大的本地希尔伯特空间维度的限制下,我们发现,频谱符号因子$ k(t)$ floquet随机电路可以精确地映射到经典的马尔可夫电路上,并且在后期,与无沮丧的Rokhsar-kivelson(RK)Type type type hamiltonian的分区功能有关。通过此映射,我们证明了rk-hamiltonian下限的光谱间隙的倒数是底层电路的无用时间$ t _ {\ mathrm {th}} $。对于具有保守较高力矩的系统,我们通过提出有效自旋链的希尔伯特空间的广义高度场表示来得出相应的RK-Hamiltonian的野外理论。使用字段理论公式,我们在连续限制中获得了RK-Hamiltonian的低洼激发的分散,这使我们能够提取$ t _ {\ mathrm {th}} $。特别是,我们分析地认为,在一个长度$ l $的系统中,保存了$ m^{th} $多极点,$ t _ {\ mathrm {th}} $ scales scales subdiffusity以$ l^{2(m+1)} $。我们还表明,我们的形式主义直接概括为更高的电路,并且在保存$ m^{th} $多极点的任何组件的系统中,$ t _ {\ mathrm {th}} $具有与系统线性尺寸的相同比例。因此,我们的工作提供了一种一般方法,用于研究受约束的多体混沌系统中的光谱统计。
We study the spectral statistics of spatially-extended many-body quantum systems with on-site Abelian symmetries or local constraints, focusing primarily on those with conserved dipole and higher moments. In the limit of large local Hilbert space dimension, we find that the spectral form factor $K(t)$ of Floquet random circuits can be mapped exactly to a classical Markov circuit, and, at late times, is related to the partition function of a frustration-free Rokhsar-Kivelson (RK) type Hamiltonian. Through this mapping, we show that the inverse of the spectral gap of the RK-Hamiltonian lower bounds the Thouless time $t_{\mathrm{Th}}$ of the underlying circuit. For systems with conserved higher moments, we derive a field theory for the corresponding RK-Hamiltonian by proposing a generalized height field representation for the Hilbert space of the effective spin chain. Using the field theory formulation, we obtain the dispersion of the low-lying excitations of the RK-Hamiltonian in the continuum limit, which allows us to extract $t_{\mathrm{Th}}$. In particular, we analytically argue that in a system of length $L$ that conserves the $m^{th}$ multipole moment, $t_{\mathrm{Th}}$ scales subdiffusively as $L^{2(m+1)}$. We also show that our formalism directly generalizes to higher dimensional circuits, and that in systems that conserve any component of the $m^{th}$ multipole moment, $t_{\mathrm{Th}}$ has the same scaling with the linear size of the system. Our work therefore provides a general approach for studying spectral statistics in constrained many-body chaotic systems.