论文标题

稳定性限制了多平台系统的表征

Stability Constrained Characterization of Multiplanet Systems

论文作者

Tamayo, Daniel, Gilbertson, Christian, Foreman-Mackey, Daniel

论文摘要

许多发现的多层网系统被紧密包装。这意味着质量和轨道元素的广泛参数可能是动态不稳定和排除的。我们提出了Kepler-23的案例研究,Kepler-23是一个紧凑的三人制系统,其中可以直接比较稳定性,过境时机变化(TTV)和过境持续时间的约束。我们发现,在这种紧密的系统中,稳定性可以在身体的质量和轨道偏心率上施加上限,这些限制与当前方法的当前状态相比或更紧密。具体而言,稳定性分别对行星$ b $,$ c $和$ d $的轨道偏心率分别为0.09、0.04和0.05的上限。这些约束对应于径向速度信号$ \ lyssim 20 $ cm/s,与过境持续时间的速度相对严格,并且与TTV的速度相当。稳定性还可以在行星$ b $,$ c $和$ d $ 2.2、16.1和5.8 $ m_ \ oplus $的质量上产生68%的上限,这些稳定性分别为内部和外部行星的TTV约束。通过n体积分,执行这种稳定性约束的表征在计算上是昂贵的。我们表明,Spock是行星轨道构型Kallasifier的稳定性,能够忠实地近似于N体结果超过4000倍。我们认为,紧凑型系统的这种稳定性限制性表征是一个具有挑战性的“针中的针刺”问题(需要为我们所采用的先验删除每个稳定的稳定配置2500个不稳定的配置),我们为此类稳定性分析提供了一些实用建议。

Many discovered multiplanet systems are tightly packed. This implies that wide parameter ranges in masses and orbital elements can be dynamically unstable and ruled out. We present a case study of Kepler-23, a compact three-planet system where constraints from stability, transit timing variations (TTVs), and transit durations can be directly compared. We find that in this tightly packed system, stability can place upper limits on the masses and orbital eccentricities of the bodies that are comparable to or tighter than current state of the art methods. Specifically, stability places 68% upper limits on the orbital eccentricities of 0.09, 0.04, and 0.05 for planets $b$, $c$ and $d$, respectively. These constraints correspond to radial velocity signals $\lesssim 20$ cm/s, are significantly tighter to those from transit durations, and comparable to those from TTVs. Stability also yields 68% upper limits on the masses of planets $b$, $c$ and $d$ of 2.2, 16.1, and 5.8 $M_\oplus$, respectively, which were competitive with TTV constraints for the inner and outer planets. Performing this stability constrained characterization is computationally expensive with N-body integrations. We show that SPOCK, the Stability of Planetary Orbital Configurations Klassifier, is able to faithfully approximate the N-body results over 4000 times faster. We argue that such stability constrained characterization of compact systems is a challenging "needle-in-a-haystack" problem (requiring removal of 2500 unstable configurations for every stable one for our adopted priors) and we offer several practical recommendations for such stability analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源