论文标题
用于许多变体和少数研究的新的多元荟萃分析模型
A new multivariate meta-analysis model for many variates and few studies
论文作者
论文摘要
研究经常估计结果与多种变体之间的关联。例如,诊断测试精度的研究估计灵敏度和特异性,以及对预测和预后因素的研究通常会估计多种因素的关联。荟萃分析是一种统计方法的家族,用于在多个研究中综合估计值。存在多元模型,可以说明内部相关性和研究间的异质性。在现有模型中必须估算的参数数量在变量数(例如风险因素)中是二次的。这意味着,如果数据稀疏,有许多变体和很少的研究,则它们可能无法使用。我们提出了一个新的模型,该模型通过近似于使用随机投影的低维空间中的学生内部相关性和研究中的异质性来解决这个问题。必须在此模型中估算的参数数量在变量的数量中线性缩放,并在近似空间的维度上进行二次缩放,从而使估计更加易于处理。我们进行了一项模拟研究,以比较使用该模型对单变量荟萃分析的估计的覆盖率,偏差和精度。我们使用正在进行的系统综述的数据对总膝关节置换术后的疼痛和功能预测的数据进行了证明。最后,我们建议一种决策工具,以帮助分析师在可用模型中选择。
Studies often estimate associations between an outcome and multiple variates. For example, studies of diagnostic test accuracy estimate sensitivity and specificity, and studies of predictive and prognostic factors typically estimate associations for multiple factors. Meta-analysis is a family of statistical methods for synthesizing estimates across multiple studies. Multivariate models exist that account for within-study correlations and between-study heterogeneity. The number of parameters that must be estimated in existing models is quadratic in the number of variates (e.g., risk factors). This means they may not be usable if data are sparse with many variates and few studies. We propose a new model that addresses this problem by approximating a variance-covariance matrix that models within-study correlation and between-study heterogeneity in a low-dimensional space using random projection. The number of parameters that must be estimated in this model scales linearly in the number of variates and quadratically in the dimension of the approximating space, making estimation more tractable. We performed a simulation study to compare coverage, bias, and precision of estimates made using the proposed model to those from univariate meta-analyses. We demonstrate the method using data from an ongoing systematic review on predictors of pain and function after total knee arthroplasty. Finally, we suggest a decision tool to help analysts choose among available models.