论文标题

关于某些口头亚组的有限属性

On finiteness of some verbal subgroups in profinite groups

论文作者

Azevedo, João, Shumyatsky, Pavel

论文摘要

给定一个组单词$ w $和一个$ g $,$ g $中的$ w $值的集合用$ g_w $表示,而口头子组$ w(g)$是$ g_w $生成的。在本文中,我们考虑pribinite群体承认一个$ w $,以便$ g_w $的基数小于$ 2^{\ aleph_0} $,而$ w(g)$是由有限的许多$ w $ values生成的。对于几个单词家庭$ w $,我们表明,在这些假设下,$ W(g)$必须是有限的。我们的结果与群体单词的简洁性概念有关。

Given a group word $w$ and a group $G$, the set of $w$-values in $G$ is denoted by $G_w$ and the verbal subgroup $w(G)$ is the one generated by $G_w$. In the present paper we consider profinite groups admitting a word $w$ such that the cardinality of $G_w$ is less than $2^{\aleph_0}$ and $w(G)$ is generated by finitely many $w$-values. For several families of words $w$ we show that under these assumptions $w(G)$ must be finite. Our results are related to the concept of conciseness of group words.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源