论文标题
在所有维度上的间隔原子的发生率
An Incidence Result for Well-Spaced Atoms in all Dimensions
论文作者
论文摘要
我们证明了一个发生率的结果,该结果计算了一组$Δ$ - 原子的$ k $ -rich $δ$ tubes。我们的结果与Szemerédi-Trotter Therorem在启发式上预测的界限相吻合,并在所有维度上都持有$ d \ geq 2 $。
We prove an incidence result counting the $k$-rich $δ$-tubes induced by a well-spaced set of $δ$-atoms. Our result coincides with the bound that would be heuristically predicted by the Szemerédi--Trotter Theorem and holds in all dimensions $d \geq 2$.