论文标题

使用延迟差分分析评估混沌系统的可观察性

Assessing observability of chaotic systems using Delay Differential Analysis

论文作者

Gonzalez, Christopher E., Lainscsek, Claudia, Sejnowski, Terrence J., Letellier, Christophe

论文摘要

可观察性可以确定给定系统的哪些记录变量对于区分其不同状态是最佳的。量化可观察性需要了解控制动态的方程式。当考虑实验数据时,这些方程通常是未知的。因此,我们提出了一种使用延迟差分分析(DDA)来数值评估可观察性的方法。给定时间序列,DDA使用延迟微分方程来近似测量的数据。预测数据和记录的数据之间的最小二乘误差越低,可观察性越高。因此,我们根据几个混沌系统的变量根据它们相应的最小平方误差来评估可观察性。通过与符号可观察性系数提供的排名以及使用储层计算和重建空间的奇异值分解相比,评估了我们的方法的性能。我们研究了方法对噪声污染的鲁棒性。

Observability can determine which recorded variables of a given system are optimal for discriminating its different states. Quantifying observability requires knowledge of the equations governing the dynamics. These equations are often unknown when experimental data are considered. Consequently, we propose an approach for numerically assessing observability using Delay Differential Analysis (DDA). Given a time series, DDA uses a delay differential equation for approximating the measured data. The lower the least squares error between the predicted and recorded data, the higher the observability. We thus rank the variables of several chaotic systems according to their corresponding least square error to assess observability. The performance of our approach is evaluated by comparison with the ranking provided by the symbolic observability coefficients as well as with two other data-based approaches using reservoir computing and singular value decomposition of the reconstructed space. We investigate the robustness of our approach against noise contamination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源