论文标题
带有边界元素的泊松玻璃到泊松布尔兹曼方程的有效网状细化
Efficient mesh refinement for the Poisson-Boltzmann equation with boundary elements
论文作者
论文摘要
Poisson-Boltzmann方程是一种广泛使用的模型,用于研究分子溶剂化中的静电。它使用边界积分公式的数值溶液仅需要在分子表面上有网格,从而产生溶质的准确表示,这通常是复杂的几何形状。在这里,我们利用基于伴随的分析来形成两个面向目标的误差估计值,使我们能够确定每个离散元素(面板)对溶剂化自由能中数值误差的贡献。此信息对于识别高误差面板很有用,然后自适应地改进它们以找到最佳的表面网格。我们提出了球体和实际分子几何形状的结果,并看到误差较大的元素往往是在具有较高静电电位的区域。我们还发现,尽管两种估计都预测了不同的总误差,但作为自适应网状精炼方案的一部分,它们的性能相似。我们的测试用例表明,自适应网格精炼方案非常有效,因为我们能够通过增加小于20 \%的网格大小来减少误差一个数量级。该结果为有效的自动网格改进方案设定了基础,该方案可为溶剂化能量计算产生最佳的网格。
The Poisson-Boltzmann equation is a widely used model to study the electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint-based analyses to form two goal-oriented error estimates that allows us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high-error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20\%. This result sets the basis towards efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.