论文标题

Eegdenoisenet:用于EEG DENOISING端到端深度学习解决方案的基准数据集

EEGdenoiseNet: A benchmark dataset for end-to-end deep learning solutions of EEG denoising

论文作者

Zhang, Haoming, Zhao, Mingqi, Wei, Chen, Mantini, Dante, Li, Zherui, Liu, Quanying

论文摘要

深度学习网络越来越吸引各个领域的关注,包括脑电图(EEG)信号处理。这些模型提供了与传统技术相当的性能。然而,目前缺乏结构化良好的标准化数据集,具有特定的基准限制了脑电图降解的深度学习解决方案的开发。在这里,我们介绍了Eegdenoisenet,这是一种基准的EEG数据集,适用于培训和测试基于深度学习的DeNoising模型,以及跨模型的性能比较。 Eegdenoisenet包含4514个干净的EEG段,3400个眼部伪像段和5598个肌肉伪影段,使用户可以与地面清洁的EEG合成受污染的EEG段。我们使用Eegdenoisenet评估了四个经典网络(一个完全连接的网络,一个简单且复杂的卷积网络以及一个经常性的神经网络)的脱氧性能。我们的分析表明,即使在高噪声污染下,深度学习方法也具有巨大的脑电图降级潜力。通过Eegdenoisenet,我们希望加快基于深度学习的EEG DeNoising的新兴领域的发展。

Deep learning networks are increasingly attracting attention in various fields, including electroencephalography (EEG) signal processing. These models provided comparable performance with that of traditional techniques. At present, however, lacks of well-structured and standardized datasets with specific benchmark limit the development of deep learning solutions for EEG denoising. Here, we present EEGdenoiseNet, a benchmark EEG dataset that is suited for training and testing deep learning-based denoising models, as well as for performance comparisons across models. EEGdenoiseNet contains 4514 clean EEG segments, 3400 ocular artifact segments and 5598 muscular artifact segments, allowing users to synthesize contaminated EEG segments with the ground-truth clean EEG. We used EEGdenoiseNet to evaluate denoising performance of four classical networks (a fully-connected network, a simple and a complex convolution network, and a recurrent neural network). Our analysis suggested that deep learning methods have great potential for EEG denoising even under high noise contamination. Through EEGdenoiseNet, we hope to accelerate the development of the emerging field of deep learning-based EEG denoising.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源