论文标题
用对称性为可组织的系统添加潜力
Adding Potentials to Superintegrable Systems with Symmetry
论文作者
论文摘要
在先前的工作中,我们考虑了与具有2、3和4维轴测代数的3维型扁平空间相关的哈密顿量。以前,我们的哈密顿人代表了自由运动,但是在这里我们考虑了在对称性存在下增加潜在功能的问题。 在3维空间中的可分离电势降低至Darboux-Koenigs Hamiltonians的3或4个参数电位。其他3D坐标系统揭示了Darboux-Koenigs与其他众所周知的超级综合汉密尔顿人之间的联系,例如开普勒问题和各向同性振荡器。
In previous work, we have considered Hamiltonians associated with 3 dimensional conformally flat spaces, possessing 2, 3 and 4 dimensional isometry algebras. Previously our Hamiltonians have represented free motion, but here we consider the problem of adding potential functions in the presence of symmetry. Separable potentials in the 3 dimensional space reduce to 3 or 4 parameter potentials for Darboux-Koenigs Hamiltonians. Other 3D coordinate systems reveal connections between Darboux-Koenigs and other well known super-integrable Hamiltonians, such as the Kepler problem and isotropic oscillator.