论文标题
代数周期和特殊的Horikawa表面
Algebraic cycles and special Horikawa surfaces
论文作者
论文摘要
本说明大约是$ 16 $维的一般类型表面的家族,其中$ p_g = 2 $和$ q = 0 $和$ k^2 = 1 $,称为“特殊Horikawa表面”。这些表面由Pearlstein-Zhang和Garbagnati研究,与K3表面有关。我们表明,从河畔的意义上讲,特殊的Horikawa表面具有多重的Chow-Künneth分解。结果,特殊Horikawa表面的Chow环显示出类似K3的行为。
This note is about a $16$-dimensional family of surfaces of general type with $p_g=2$ and $q=0$ and $K^2=1$, called "special Horikawa surfaces". These surfaces, studied by Pearlstein-Zhang and by Garbagnati, are related to K3 surfaces. We show that special Horikawa surfaces have a multiplicative Chow-Künneth decomposition, in the sense of Shen-Vial. As a consequence, the Chow ring of special Horikawa surfaces displays K3-like behaviour.