论文标题
与MEX相关的分区以及与普通分区和奇异分区的关系
Mex-related partitions and relations to ordinary partition and singular overpartitions
论文作者
论文摘要
在最近的一篇论文中,安德鲁斯和纽曼使用最少的排除物或“ MEX”功能引入了某些分区功能。在本文中,我们研究了Andrews和Newman引入的两个功能家族,即$ P_ {T,T,T}(N)$和$ P_ {2T,T}(N)$。我们建立了将普通分区函数$ p(n)$连接到$ p_ {t,t}(n)$和$ p_ {2t,t}(n)$的身份。使用这些身份,我们证明了Ramanujan的著名一致性$ P(n)$也可以通过$ p_ {t,t}(n)$和$ p_ {2t,t}(n)$满足无限的$ t $。最近,Da Silva和卖家提供了$ p_ {1,1}(n)$和$ p_ {3,3}(n)$的完全均等特征。我们证明$ p_ {t,t}(n)\ equiv \ etlline {c} _ {4t,t}(n)\ pmod {2} $ for all $ n \ geq 0 $ and $ n \ geq 0 $ and $ t \ geq 1 $,其中$ \ + \ + + + + + edline {c} _ {c} _ {4t,t,t} $ is and and and and and and and and and and and and and and and and and and and and and and and and and和使用此一致性,Da Silva和卖家给出的$ P_ {1,1}(N)$的均等表征遵循$ \ overline {C} _ {4,1}(N)$的均等表征。我们还提供了Da Silva和卖方已经证明的某些一致性的基本证据。
In a recent paper, Andrews and Newman introduced certain families of partition functions using the minimal excludant or "mex" function. In this article, we study two of the families of functions Andrews and Newman introduced, namely $p_{t,t}(n)$ and $p_{2t,t}(n)$. We establish identities connecting the ordinary partition function $p(n)$ to $p_{t,t}(n)$ and $p_{2t,t}(n)$ for all $t\geq 1$. Using these identities, we prove that the Ramanujan's famous congruences for $p(n)$ are also satisfied by $p_{t,t}(n)$ and $p_{2t,t}(n)$ for infinitely many values of $t$. Very recently, da Silva and Sellers provide complete parity characterizations of $p_{1,1}(n)$ and $p_{3,3}(n)$. We prove that $p_{t,t}(n)\equiv \overline{C}_{4t,t}(n) \pmod{2}$ for all $n\geq 0$ and $t\geq 1$, where $\overline{C}_{4t,t}(n)$ is the Andrews' singular overpartition function. Using this congruence, the parity characterization of $p_{1,1}(n)$ given by da Silva and Sellers follows from that of $\overline{C}_{4,1}(n)$. We also give elementary proofs of certain congruences already proved by da Silva and Sellers.